Abstract

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the two aggressive subtypes of liver cancer (LC). Immense cellular heterogeneity and cross-talk between cancer and healthy cells make it challenging to treat these cancer subtypes. To address these challenges, the study aims to systematically characterize the tumor heterogeneity of LC subtypes using single-cell RNA sequencing (scRNA-seq) datasets. The study combined 51,927 single cells from HCC, ICC, and healthy scRNA-seq datasets. After integrating the datasets, cell groups with similar gene expression patterns are clustered and cluster annotation has been performed based on gene markers. Cell-cell communication analysis (CCA) was implemented to understand the cross-talk between various cell types. Further, differential gene expression analysis and enrichment analysis were carried out to identify unique molecular drivers associated with HCC and ICC. Our analysis identified T cells, hepatocytes, epithelial cells, and monocyte as the major cell types present in the tumor microenvironment. Among them, abundance of natural killer (NK) cells in HCC, epithelial cells, and hepatocytes in ICC was detected. CCA revealed key interaction between T cells to NK cells in HCC and smooth muscle cells to epithelial cells in the ICC. Additionally, SOX4 and DTHD1 are the top differentially expressed genes (DEGs) in HCC, while keratin and CCL4 are in ICC. Enrichment analysis of DEGs reveals major upregulated genes in HCC affect protein folding mechanism and in ICC alter pathways involved in cell adhesion. The findings suggest potential targets for the development of novel therapeutic strategies for the treatment of these two aggressive subtypes of LC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call