Abstract

Members of Paramecium species are often referred to as “swimming neurons or sensory cells” applicable to micro-biorobotics or BioMEMS (biological micro-electro-mechanical systems). Paramecium bursaria known as green paramecia is an unicellular organism that lives widely in fresh water environments such as rivers and ponds. Recent studies have suggested that in vivo cellular robotics using the living cells of green paramecia as micro-machines controllable under electrical, optical and magnetic signals, has a variety of engineering applications such as transportation of micro-sized particles (ingested within the cells) in the capillary systems. In the present study, we aimed to test if the swimming environment of green paramecia can be implementable on microchips. For this purpose, the series of microchips were prepared for cellular swimming platform for green paramecia through fabrication of poly(methyl methacrylate) master plates using the programmable micro-milling system followed by polydimethylsiloxane-based micro-casting. Finally, microchips equipped with optimally sized micro-flow channels for allowing the single cell traffic by swimming green paramecia were successfully prepared, and thus further studies for application of green paramecium cells in BioMEMS are encouraged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.