Abstract
Lizards are the closest relatives of mammals capable of tail regeneration, but the specific determinants of amniote regenerative capabilities are currently unknown. Macrophages are phagocytic immune cells that play a critical role in wound healing and tissue regeneration in a wide range of species. We hypothesize that macrophages regulate the process of lizard tail regeneration, and that comparisons with mammalian cell populations will yield insight into the role phagocytes play in determining an organism's regenerative potential. Single cell RNA sequencing (scRNAseq) was used to profile lizard immune cells and compare with mouse counterparts to contrast cell types between the two species. Treatment with clodronate liposomes effectively inhibited lizard tail stump tissue ablation and subsequent regeneration, and scRNAseq was used to profile changes in lizard immune cell populations resulting from tail amputation as well as identifying specific cell types affected by clodronate treatment. ScRNAseq analysis of lizard bone marrow, peripheral blood, and tissue-resident phagocyte cell populations was used to trace marker progression during macrophage differentiation and activation. These results indicated that lizard macrophages are recruited to tail amputation injuries faster than mouse populations and express high levels of matrix metalloproteinases (MMPs). In turn, treatment with MMP inhibitors inhibited lizard tail regeneration. These results provide single cell sequencing data sets for evaluating and comparing lizard and mammalian immune cell populations, and identifying macrophage populations that are critical regulators of lizard tail regrowth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.