Abstract

Low back pain (LBP) is largely attributed to intervertebral disc degeneration (IVDD), of which the endplate changes are an important component. However, the alterations in cell fate and properties within the endplates during degeneration remain unknown. Here, we firstly performed the single-cell RNA-sequencing analysis (scRNA-seq) of the cells focusing on degenerative human endplates. By unsupervised clustering of the 8,534 single-cell based on the gene expression, we identified nine distinct cell types. We employed Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, and the single-cell regulatory network inference and clustering (SCENIC) to determine the enriched pathways and transcriptional activities across seven chondrocyte subpopulations. Furthermore, two cell fates of chondrocyte differentiation were found by trajectory analysis, one was enriched in inflammation-related genes, and the other was related to extracellular matrix (ECM). Additionally, the intercellular interactions of macrophages (MA) and chondrocytes, T cells/natural killer cells (T/NK) and chondrocytes were examined by ligand-receptor pairs analysis, showing the important regulative function of FN1 from MA and CD74 from T/NK during endplate degeneration. Overall, our findings provide novel perspectives on the endplate degeneration at the single-cell level and a whole-transcriptome size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.