Abstract

The role of monocytes in postmenopausal osteoporosis is widely recognized; however, the mechanisms underlying monocyte reprogramming remain unknown. In this study, single-cell RNA sequencing (scRNA-seq) was conducted on CD14+ bone marrow monocytes obtained from three postmenopausal women with normal bone mineral density (BMD) and three women with postmenopausal osteoporosis (PMOP). Monocle2 was used to classify the monocytes into 7 distinct clusters. The proportion of Cluster 1 significantly decreased in PMOP patients, while the proportion of Cluster 7 increased. Further analysis via GSEA, transcription factor activity analysis, and sc-metabolic analysis revealed significant differences between Clusters 1 and 7. Cluster 7 exhibited upregulated pathways associated with inflammation, immunity, and osteoclast differentiation, whereas Cluster 1 demonstrated the opposite results. Monocle2, TSCAN, VECTOR and scVelo data indicated that Cluster 1 represented the initial subset and that Cluster 7 represents one of the terminal subsets. BayesPrism and ssGSEA were employed to analyze the bulk transcriptome data obtained from the GEO database. The observed alterations in the proportions of Clusters 1 and 7 were validated and found to have diagnostic significance. CD16 serves as the marker gene for Cluster 7, thus leading to an increased proportion of CD16+ monocytes in women with PMOP. Flow cytometry was used to assess the consistency of outcomes with those of the bioinformatic analysis. Subsequently, an additional scRNA-seq analysis was conducted on bone marrow mononuclear cells obtained from three patients with PMOP and three postmenopausal women with normal BMD. The differential proportions of Cluster 1 and Cluster 7 were once again confirmed, with the pathological effect of Cluster 7 may attribute to cell-cell communication. The scRNA-seq findings suggest that an imbalance in monocyte subsets is a characteristic feature of PMOP. These findings elucidate the limitations of utilizing bulk transcriptome data for detecting alterations in monocytes, which may influence novel research inquiries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call