Abstract

BackgroundBreast cancer is the most common cancer affecting women across the world. Tumor endothelial cells (TECs) and malignant cells are the major constituents of the tumor microenvironment (TME), but their origin and role in shaping disease initiation, progression, and treatment responses remain unclear due to significant heterogeneity.MethodsTissue samples were collected from eight patients presenting with breast cancer. Single-cell RNA sequencing (scRNA-seq) analysis was employed to investigate the presence of distinct cell subsets in the tumor microenvironment. InferCNV was used to identify cancer cells. Pseudotime trajectory analysis revealed the dynamic process of breast cancer angiogenesis. We validated the function of small extracellular vesicles (sEVs)-derived protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B) in vitro experiments.ResultsWe performed single-cell transcriptomics analysis of the factors associated with breast cancer angiogenesis and identified twelve subclusters of endothelial cells involved in the tumor microenvironment. We also identified the role of TECs in tumor angiogenesis and confirmed their participation in different stages of angiogenesis, including communication with other cell types via sEVs. Overall, the research uncovered the TECs heterogeneity and the expression levels of genes at different stages of tumor angiogenesis.ConclusionsThis study showed sEVs derived from breast cancer malignant cells promote blood vessel formation by activating endothelial cells through the transfer of PPP1R1B. This provides a new direction for the development of anti-angiogenic therapies for human breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call