Abstract
Alzheimers disease leads to progressive neurodegeneration and dementia. Alzheimers disease primarily affects older adults with neuropathological changes including amyloid beta deposition, neuroinflammation, and neurodegeneration. We have previously demonstrated that systemic treatment with combined stem cell factor, SCF, and granulocyte colony stimulating factor, GCSF, reduces amyloid beta load, increases amyloid beta uptake by activated microglia and macrophages, reduces neuroinflammation, and restores dendrites and synapses in the brains of aged APP-PS1 mice. However, the mechanisms underlying SCF-GCSF-enhanced brain repair in aged APP-PS1 mice remain unclear. This study used a transcriptomic approach to identify potential mechanisms by which SCF-GCSF treatment modulates microglia and peripheral myeloid cells to mitigate Alzheimers disease pathology in the aged brain. After injections of SCF-GCSF for 5 consecutive days, single cell RNA sequencing was performed on CD11b positive cells isolated from the brains of 28-month-old APP-PS1 mice. The vast majority of cell clusters aligned with transcriptional profiles of microglia in various activation states. However, SCF-GCSF treatment dramatically increased a cell population showing upregulation of marker genes related to peripheral myeloid cells. Flow cytometry data also revealed an SCF-GCSF-induced increase of cerebral CD45high-CD11b positive active phagocytes. SCF-GCSF treatment robustly increased the transcription of genes implicated in immune cell activation, including gene sets that regulate inflammatory processes and cell migration. Expression of S100a8 and S100a9 were robustly enhanced following SCF-GCSF treatment in all CD11b positive cell clusters. Moreover, the topmost genes differentially expressed with SCF-GCSF treatment were largely upregulated in S100a8-S100a9 positive cells, suggesting a well-conserved transcriptional profile related to SCF-GCSF treatment in resident and peripherally derived CD11b positive immune cells. This S100a8-S100a9-associated transcriptional profile contained notable genes related to proinflammatory and antiinflammatory responses, neuroprotection, and amyloid beta plaque inhibition or clearance. Altogether, this study reveals immunomodulatory effects of SCF-GCSF treatment in the aged brain with Alzheimers disease pathology, which will guide future studies to further uncover the therapeutic mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.