Abstract

Despite recent progress recognizing the importance of aryl hydrocarbon receptor (Ahr)-dependent signaling in suppressing colon tumorigenesis, its role in regulating colonic crypt homeostasis remains unclear. To assess the effects of Ahr on intestinal epithelial cell heterogeneity and functional phenotypes, we utilized single-cell transcriptomics and advanced analytic strategies to generate a high-quality atlas for colonic intestinal crypts from wild-type and intestinal-specific Ahr knockout mice. Here we observed the promotive effects of Ahr deletion on Foxm1-regulated genes in crypt-associated canonical epithelial cell types and subtypes of goblet cells and deep crypt-secretory cells. We also show that intestinal Ahr deletion elevated single-cell entropy (a measure of differentiation potency or cell stemness) and RNA velocity length (a measure of the rate of cell differentiation) in noncycling and cycling Lgr5+ stem cells. In general, intercellular signaling cross-talk via soluble and membrane-bound factors was perturbed in Ahr-null colonocytes. Taken together, our single-cell RNA sequencing analyses provide new evidence of the molecular function of Ahr in modulating putative stem cell driver genes, cell potency lineage decisions, and cell-cell communication in vivo. PREVENTION RELEVANCE: Our mouse single-cell RNA sequencing analyses provide new evidence of the molecular function of Ahr in modulating colonic stemness and cell-cell communication in vivo. From a cancer prevention perspective, Ahr should be considered a therapeutic target to recalibrate remodeling of the intestinal stem cell niche.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.