Abstract

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease characterized by smooth muscle cell depletion, ECM (extracellular matrix) degradation, and infiltration of immune cells. The cellular and molecular profiles that govern the heterogeneity of the AAA aorta are yet to be elucidated. Approach and Results: We performed single-cell RNA sequencing on mouse AAA tissues. AAA was induced in C57BL/6J mice by perivascular application of CaCl2. Unbiased clustering identified 12 distinct populations of 8 cell types. Percentages of each population and gene expression were compared between sham and AAA tissue. Furthermore, we characterized the transcriptional profiles and potential functional features of populations in smooth muscle cells, fibroblasts, and macrophages and revealed the unique regulons in each cell type. Together, these data provide high-resolution insight into the complexity and heterogeneity of mouse AAA and indicate that populations within major cell types such as smooth muscle cells, fibroblasts, and macrophages may contribute differently to AAA pathogenesis. Graphic Abstract: A graphic abstract is available for this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.