Abstract

Tumor metastasis is the leading cause of high mortality in hepatocellular carcinoma (HCC). The metastasis-related HCC microenvironment is characterized by high heterogeneity. Single-cell RNA sequencing (scRNA-seq) may aid in determining specific cell clusters involved in regulating the immune microenvironment of HCC. The scRNA-seq data of 10 HCC samples were collected from the Gene Expression Omnibus (GEO) database GSE124395. Correlations between key gene expression and clinicopathological data were determined using public databases. HCC tissues and matched tumor-adjacent and normal tissue samples were obtained by surgical resection at Sichuan Cancer Hospital. Immune cell infiltration analysis was performed and verified by immunohistochemistry and immunofluorescent staining. Nine malignant hepatocyte clusters with different marker genes and biological functions were identified. C3_Hepatocyte-SERF2 and C6_Hepatocyte-IL13RA2 were mainly involved in the regulation of the immune microenvironment, which was also a significant pathway in regulating HCC metastasis. Key genes in malignant hepatocyte clusters that associated with HCC metastasis were further screened by LASSO regression analysis. TPI1, a key gene in C6_Hepatocyte-IL13RA2 and HCC metastasis, could participate in regulating the HCC immune microenvironment in The Cancer Genome Atlas (TCGA) and Tumor Immune Estimation Resource (TIMER) databases. Moreover, immunohistochemistry analysis demonstrated that TPI1 expression was positively correlated with HCC metastasis and poor prognosis, while negatively correlated with CD8+ T cell infiltration. The negative correlation between TPI1 expression and CD8+ T cell infiltration was further confirmed by immunofluorescence staining. In summary, a cluster of TPI1+ malignant hepatocytes was associated with the suppression of CD8+ T cell infiltration and HCC metastasis, providing novel insights into potential biomarkers for immunotherapy in HCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.