Abstract
To investigate the impact of the tumor microenvironment (TME) on the responsiveness to chemotherapy in ovarian cancer (OV). We integrated single cell RNA-seq datasets of OV containing chemo-response information, and characterize their clusters based on different TME sections. We focus on analyzing cell-cell communication to elaborate on the mechanisms by which different components of the TME directly influence the chemo-response of tumor cells. scRNA-seq datasets were annotated according to specific markers for different cell types. Differential analysis of malignant epithelial cells revealed that chemoresistance was associated with the TME. Notably, distinct TME components exhibited varying effects on chemoresistance. Enriched SPP1+ tumor-associated macrophages in chemo-resistant patients could promote chemoresistance through SPP1 binding to CD44 on tumor cells. Additionally, the overexpression of THBS2 in stromal cells could promote chemoresistance through binding with CD47 on tumor cells. In contrast, GZMA in the lymphocytes could downregulate the expression of PARD3 through direct interaction with PARD3, thereby attenuating chemoresistance in tumor cells. Our study indicates that the non-tumor cell components of the TME (e.g. SPP1+ TAMs, stromal cells and lymphocytes) can directly impact the chemo-response of OV and targeting the TME was potentially crucial in chemotherapy of OV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.