Abstract

Barrett’s oesophagus is a precursor of oesophageal adenocarcinoma. In this common condition, squamous epithelium in the oesophagus is replaced by columnar epithelium in response to acid reflux. Barrett’s oesophagus is highly heterogeneous and its relationships to normal tissues are unclear. Here we investigate the cellular complexity of Barrett’s oesophagus and the upper gastrointestinal tract using RNA-sequencing of single cells from multiple biopsies from six patients with Barrett’s oesophagus and two patients without oesophageal pathology. We find that cell populations in Barrett’s oesophagus, marked by LEFTY1 and OLFM4, exhibit a profound transcriptional overlap with oesophageal submucosal gland cells, but not with gastric or duodenal cells. Additionally, SPINK4 and ITLN1 mark cells that precede morphologically identifiable goblet cells in colon and Barrett’s oesophagus, potentially aiding the identification of metaplasia. Our findings reveal striking transcriptional relationships between normal tissue populations and cells in a premalignant condition, with implications for clinical practice.

Highlights

  • Barrett’s oesophagus is a precursor of oesophageal adenocarcinoma

  • Applying a threshold set at the tenth centile to include 90% of cells in which at least one transcript was detected from each gene of interest, we found that mucin 2 (MUC2) RNA co-expressed with intelectin 1 (ITLN1) and Kazal type 4 serine peptidase inhibitor (SPINK4) in 61% of goblet cells from duodenum, gastric and Barrett’s oesophagus (BO) samples (Fig. 4a–b)

  • Glandular epithelial cells are replaced by squamous epithelium during development of the oesophagus and oesophageal submucosal glands (OSGs) are functionally important structures formed from remaining glandular epithelium[40]

Read more

Summary

Introduction

Barrett’s oesophagus is a precursor of oesophageal adenocarcinoma. In this common condition, squamous epithelium in the oesophagus is replaced by columnar epithelium in response to acid reflux. Given the highly heterogeneous nature of BO, we hypothesise that single cell RNA-seq might clarify the relationships between cells in normal tissues and BO, and indicate whether there are specialised cells in BO with similar functions to cells elsewhere in the gastrointestinal tract We apply this approach to biopsies from BO, normal oesophagus, stomach and small intestine (duodenum). This reveals a cell population in BO that expresses the developmental gene (LEFTY1) and is distinct from intestinal or gastric cells, but has a highly similar RNA composition to columnar gene expressing cells from oesophageal submucosal glands in normal oesophagus

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call