Abstract

BackgroundCardiac differentiation from human pluripotent stem cells provides a unique opportunity to study human heart development in vitro and offers a potential cell source for cardiac regeneration. Compared to the large body of studies investigating cardiac maturation and cardiomyocyte subtype-specific induction, molecular events underlying cardiac lineage commitment from pluripotent stem cells at early stage remain poorly characterized.ResultsIn order to uncover key molecular events and regulators controlling cardiac lineage commitment from a pluripotent state during differentiation, we performed single-cell RNA-Seq sequencing and obtained high-quality data for 6879 cells collected from 6 stages during cardiac differentiation from human embryonic stem cells and identified multiple cell subpopulations with distinct molecular features. Through constructing developmental trajectory of cardiac differentiation and putative ligand-receptor interactions, we revealed crosstalk between cardiac progenitor cells and endoderm cells, which could potentially provide a cellular microenvironment supporting cardiac lineage commitment at day 5. In addition, computational analyses of single-cell RNA-Seq data unveiled ETS1 (ETS Proto-Oncogene 1) activation as an important downstream event induced by crosstalk between cardiac progenitor cells and endoderm cells. Consistent with the findings from single-cell analysis, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) against ETS1 revealed genomic occupancy of ETS1 at cardiac structural genes at day 9 and day 14, whereas ETS1 depletion dramatically compromised cardiac differentiation.ConclusionTogether, our study not only characterized the molecular features of different cell types and identified ETS1 as a crucial factor induced by cell-cell crosstalk contributing to cardiac lineage commitment from a pluripotent state, but may also have important implications for understanding human heart development at early embryonic stage, as well as directed manipulation of cardiac differentiation in regenerative medicine.

Highlights

  • Differentiation of human embryonic stem cell into cardiomyocytes (CMs) has been an essential model system to provide insights into the molecular mechanism of heart development [1,2,3,4]

  • Cells were sequenced to a median of 2959 genes detected/cell, with a median of 16,903 unique molecular identifiers (UMIs) calculated/cell (Additional file 1: Figure S1A)

  • Non-linear dimension reduction of scRNASeq data by t-distributed stochastic neighbor embedding (t-SNE) revealed 6 clearly separated cell populations (T00, T02, T05, T09, T14, T60), each corresponding to a specific time point, indicating the reliability of our platform (Fig. 1a, left panel)

Read more

Summary

Introduction

Differentiation of human embryonic stem cell (hESC) into cardiomyocytes (CMs) has been an essential model system to provide insights into the molecular mechanism of heart development [1,2,3,4]. Several studies used human pluripotent stem cell-derived cardiomyocytes or cardiac progenitors to repair injured myocardium in primates or even in humans [6,7,8] These studies displayed considerable remuscularization and improved cardiac function, which shed light on the application of pluripotent stem cells in heart regenerative medicine. Despite these remarkable advances, adverse effects, such as arrhythmia and teratoma formation, still impede successful clinical translation, highlighting the need for a deeper understanding of the molecular paths from pluripotent stem cells to cardiomyocytes. Compared to our knowledge of CM subtype specification and maturation at later stages of differentiation [4, 9, 10], much less is known about cardiac fate commitment at earlier stages. Compared to the large body of studies investigating cardiac maturation and cardiomyocyte subtype-specific induction, molecular events underlying cardiac lineage commitment from pluripotent stem cells at early stage remain poorly characterized

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call