Abstract

A nanomotor-based strategy for rapid single-step intracellular biosensing of a target miRNA, expressed in intact cancer cells, at the single cell level is described. The new concept relies on the use of ultrasound (US) propelled dye-labeled single-stranded DNA (ssDNA)/graphene-oxide (GO) coated gold nanowires (AuNWs) capable of penetrating intact cancer cells. Once the nanomotor is internalized into the cell, the quenched fluorescence signal (produced by the π-π interaction between GO and a dye-labeled ssDNA) is recovered due to the displacement of the dye-ssDNA probe from the motor GO-quenching surface upon binding with the target miRNA-21, leading to an attractive intracellular "OFF-ON" fluorescence switching. The faster internalization process of the US-powered nanomotors and their rapid movement into the cells increase the likelihood of probe-target contacts, leading to a highly efficient and rapid hybridization. The ability of the nanomotor-based method to screen cancer cells based on the endogenous content of the target miRNA has been demonstrated by measuring the fluorescence signal in two types of cancer cells (MCF-7 and HeLa) with significantly different miRNA-21 expression levels. This single-step, motor-based miRNAs sensing approach enables rapid "on the move" specific detection of the target miRNA-21, even in single cells with an extremely low endogenous miRNA-21 content, allowing precise and real-time monitoring of intracellular miRNA expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.