Abstract

BackgroundTumor-associated macrophages (TAMs) are abundant in gliomas and immunosuppressive TAMs are a barrier to emerging immunotherapies. It is unknown to what extent macrophages derived from peripheral blood adopt the phenotype of brain-resident microglia in pre-treatment gliomas. The relative proportions of blood-derived macrophages and microglia have been poorly quantified in clinical samples due to a paucity of markers that distinguish these cell types in malignant tissue.ResultsWe perform single-cell RNA-sequencing of human gliomas and identify phenotypic differences in TAMs of distinct lineages. We isolate TAMs from patient biopsies and compare them with macrophages from non-malignant human tissue, glioma atlases, and murine glioma models. We present a novel signature that distinguishes TAMs by ontogeny in human gliomas. Blood-derived TAMs upregulate immunosuppressive cytokines and show an altered metabolism compared to microglial TAMs. They are also enriched in perivascular and necrotic regions. The gene signature of blood-derived TAMs, but not microglial TAMs, correlates with significantly inferior survival in low-grade glioma. Surprisingly, TAMs frequently co-express canonical pro-inflammatory (M1) and alternatively activated (M2) genes in individual cells.ConclusionsWe conclude that blood-derived TAMs significantly infiltrate pre-treatment gliomas, to a degree that varies by glioma subtype and tumor compartment. Blood-derived TAMs do not universally conform to the phenotype of microglia, but preferentially express immunosuppressive cytokines and show an altered metabolism. Our results argue against status quo therapeutic strategies that target TAMs indiscriminately and in favor of strategies that specifically target immunosuppressive blood-derived TAMs.

Highlights

  • Tumor-associated macrophages (TAMs) are abundant in gliomas and immunosuppressive Tumorassociated macrophage (TAM) are a barrier to emerging immunotherapies

  • We found that putative TAMs identified from the whole-tumor scRNA-seq clustered together with TAMs sequenced from the CD11b + suspensions and away from putative neoplastic cells from the whole-tumor scRNA-seq

  • In a principal component analysis (PCA) of the combined table, we found that Principal component 1 (PC1) stratified TAMs into two distinct platform-independent populations (Fig. 3a, Additional file 2: Figure S2a)

Read more

Summary

Introduction

Tumor-associated macrophages (TAMs) are abundant in gliomas and immunosuppressive TAMs are a barrier to emerging immunotherapies. It is unknown to what extent macrophages derived from peripheral blood adopt the phenotype of brain-resident microglia in pre-treatment gliomas. The relative proportions of blood-derived macrophages and microglia have been poorly quantified in clinical samples due to a paucity of markers that distinguish these cell types in malignant tissue. The cellular heterogeneity of tumor-associated macrophages (TAMs) is a critical roadblock to the development of cancer immunotherapies. Evidence suggests that subpopulations of TAMs are resistant to CSF1R inhibition [3]. Another example is acquired resistance to the anti-angiogenesis therapy bevacizumab. Blood-derived TAMs preferentially contribute to therapy resistance, relative to brainresident microglia [4]. CSF1R blockade exemplifies the status quo, which seeks to target TAMs indiscriminately even though TAMs can play both tumor-supportive and anti-tumor roles

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.