Abstract

BackgroundThe production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids.ResultsRhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1), lipid/biomass (68%) and lipid/glucose yields (16%). Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased.ConclusionsThis study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils.

Highlights

  • The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols

  • R. glacialis DBVPG 4785 can be regarded as an obligate psychrophilic strain, based on the current classification [12,13]

  • 14.1 g L-1 dry biomass and 4.8 g L-1 lipids were obtained from 40 g L-1 glucose, without any significant effect (P > 0.05) of temperature (Table 1)

Read more

Summary

Introduction

The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids Oleaginous microorganisms, such as yeasts, fungi, and microalgae, can accumulate high amounts of neutral storage lipids under appropriate cultivation conditions [1,2], their potential as sources of triacylglycerols (TAG) has attracted considerable attention. Many yeast species were found to be oleaginous and accumulated TAG from 20 to 70% of biomass under appropriate cultivation conditions They include Cryptococcus albidus, Lipomyces lipofera, Lipomyces starkeyi, Rhodosporidium toruloides, Rhodotorula glutinis, Trichosporon pullulan, and Yarrowia lipolytica [2,6,7]. In non-oleaginous species, the carbon excess remains unutilized or is converted into storage polysaccharides, while, in oleaginous species, it is preferentially channeled toward lipid synthesis, leading to the accumulation of TAG within intracellular lipid bodies [6,8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.