Abstract

Micropatterned arrays considerably advanced single cell fluorescence time-lapse measurements by providing standardized boundary conditions for thousands of cells in parallel. In these assays, cells are forced to adhere to defined microstructured protein islands separated by passivated, nonadhesive areas. Here we provide a detailed protocol on how to reproducibly fabricate high quality single cell arrays by microscale plasma-initiated protein patterning (μPIPP). Advantages of μPIPP arrays are the ease of preparation and the unrestricted choice of substrates as well as proteins. We demonstrate how the arrays enable the efficient measurement of single cell time trajectories using automated data acquisition and data analysis by example of single cell gene expression after mRNA transfection and time courses of single cell apoptosis. We discuss the more general use of the protocol for assessment of single cell dynamics with the help of fluorescent reporters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.