Abstract

Mechanical characterization of suspended cells by constriction-based microfluidic devices has currently various limitations related to the available analysis models. In this work, we propose a new methodology to analyze the experiments. This approach is based on numerical simulations to describe fluid forces and cell deformation and on an extension of the quasi-linear viscoelasticity theory developed by Fung. The cells are considered visco-hyperelastic, homogeneous, and isotropic. The approach allows for assessing the mechanical parameters of individual cells, which is not possible using previous approaches, notably increasing the power of the constriction-based microfluidic technique. A practical procedure to compute mechanical parameters is proposed and demonstrated by analyzing experiments with suspended cells. The methodology developed in this work provides a convenient tool to overcome critical limitations of the state of the art and to leverage the potential of these microfluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.