Abstract

Identifying the islet heterogeneity (cell types and the proportion of each subpopulation) and their relevance to function and disease will lead to fundamental information for the prevention and therapies of diabetes. Here, we introduce a single-cell phenotypic essay on the heterogeneity within individual pancreatic islets by using the combination of synchrotron infrared microspectroscopy and quantitative calculation. In a mouse model, the cellular heterogeneities at both the whole pancreas and single intact islet level were identified. The variation of biochemical phenotypes successfully subdivided islet cells into five main groups and quantitatively determined their proportion. These findings not only demonstrate single-cell infrared phenomics as a value complementary technique and strategy for the description of cellular heterogeneity within the pancreatic islets but also provide a quick, label-free optical platform for investigating phenotypic heterogeneity at the small-organelle level with single cell resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call