Abstract

The spatial genome organization of a eukaryotic cell is important for its function. The development of single-cell technologies for probing the three-dimensional (3D) genome conformation, especially single-cell chromosome conformation capture techniques (ScHi-C), has enabled us to understand genome function better than before. However, due to extreme sparsity and high noise associated with single-cell Hi-C data, it is still difficult to study genome structure and function using the HiC-data of one single cell. In this work, we developed a deep learning method ScHiCEDRN based on deep residual networks and generative adversarial networks for the imputation and enhancement of Hi-C data of a single cell. In terms of both image evaluation and Hi-C reproducibility metrics, ScHiCEDRN outperforms the four deep learning methods (DeepHiC, HiCPlus, HiCSR, and Loopenhance) on enhancing the raw single-cell Hi-C data of human and Drosophila. The experiments also show that it can generate single-cell Hi-C data more suitable for identifying topologically associating domain (TAD) boundaries and reconstructing 3D chromosome structures than the existing methods. Moreover, ScHiCEDRN's performance generalizes well across different single cells and cell types, and it can be applied to improving population Hi-C data. The source code of ScHiCEDRN is available at the GitHub repository: https://github.com/BioinfoMachineLearning/ScHiCEDRN. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.