Abstract
Identification of human disease signature genes typically requires samples from many donors to achieve statistical significance. Here, we show that single-cell heterogeneity analysis may overcome this hurdle by significantly improving the test sensitivity. We analyzed the transcriptome of 39,905 single islets cells from 9 donors and observed distinct β cell heterogeneity trajectories associated with obesity or type 2 diabetes (T2D). We therefore developed RePACT, a sensitive single-cell analysis algorithm to identify both common and specific signature genes for obesity and T2D. We mapped both β-cell-specific genes and disease signature genes to the insulin regulatory network identified from a genome-wide CRISPR screen. Our integrative analysis discovered the previously unrecognized roles of the cohesin loading complex and the NuA4/Tip60 histone acetyltransferase complex in regulating insulin transcription and release. Our study demonstrated the power of combining single-cell heterogeneity analysis and functional genomics to dissect the etiology of complex diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.