Abstract

Myocardial regenerative strategies are promising where the choice of ideal cell population is crucial for successful translational applications. Herein, we explored the regenerative/repair responses of infarct zone cardiac fibroblast(s) (CF) by unveiling their phenotype heterogeneity at single-cell resolution. CF were isolated from the infarct zone of Yucatan miniswine that suffered myocardial infarction, cultured under simulated ischemic and reperfusion, and grouped into control, ischemia, and ischemia/reperfusion. The single-cell RNA sequencing analysis revealed 19 unique cell clusters suggesting distinct subpopulations. The status of gene expression (log2 fold change (log2 FC)>2 and log2 FC < -2) was used to define the characteristics of each cluster unveiling with diverse features, including the pro-survival/cardioprotective (Clusters 1, 3, 5, 9, and 18), vasculoprotective (Clusters 2 and 5), anti-inflammatory (Clusters 4 and 17), proliferative (Clusters 4 and 5), nonproliferative (Clusters 6, 8, 11, 16, 17, and 18), proinflammatory (Cluster 6), profibrotic/pathologic (Clusters 8 and 19), antihypertrophic (Clusters 8 and 10), extracellular matrix restorative (Clusters 9 and 12), angiogenic (Cluster 16), and normal (Clusters 7 and 15) phenotypes. Further understanding of these unique phenotypes of CF will provide significant translational opportunities for myocardial regeneration and cardiac management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.