Abstract

Toxoplasmosis represents a significant public health and veterinary concern due to its widespread distribution, zoonotic transmission, and potential for severe health impacts in susceptible individuals and animal populations. The ability to design and produce recombinant proteins with precise antigenic properties is fundamental, as they serve as tools for accurate disease detection and effective immunization strategies, contributing to improved healthcare outcomes and disease control. Most commonly, a prokaryotic expression system is employed for the production of both single antigens and multi-epitope chimeric proteins; however, the cloning strategies, bacterial strain, vector, and expression conditions vary. Moreover, literature reports show the use of alternative microbial systems such as yeast or Leishmania tarentolae. This review provides an overview of the methods and strategies employed for the production of recombinant Toxoplasma gondii antigenic proteins for the serological detection of T. gondii infection and vaccine development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.