Abstract

BackgroundThe discovery that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) has provided a foundation for in vitro human disease modelling, drug development and population genetics studies. Gene expression plays a critical role in complex disease risk and therapeutic response. However, while the genetic background of reprogrammed cell lines has been shown to strongly influence gene expression, the effect has not been evaluated at the level of individual cells which would provide significant resolution. By integrating single cell RNA-sequencing (scRNA-seq) and population genetics, we apply a framework in which to evaluate cell type-specific effects of genetic variation on gene expression.ResultsHere, we perform scRNA-seq on 64,018 fibroblasts from 79 donors and map expression quantitative trait loci (eQTLs) at the level of individual cell types. We demonstrate that the majority of eQTLs detected in fibroblasts are specific to an individual cell subtype. To address if the allelic effects on gene expression are maintained following cell reprogramming, we generate scRNA-seq data in 19,967 iPSCs from 31 reprogramed donor lines. We again identify highly cell type-specific eQTLs in iPSCs and show that the eQTLs in fibroblasts almost entirely disappear during reprogramming.ConclusionsThis work provides an atlas of how genetic variation influences gene expression across cell subtypes and provides evidence for patterns of genetic architecture that lead to cell type-specific eQTL effects.

Highlights

  • The discovery that somatic cells can be reprogrammed to induced pluripotent stem cells has provided a foundation for in vitro human disease modelling, drug development and population genetics studies

  • Cell types were classified based on the relative activity of the regulating transcription factors in fibroblasts (SIX5+, HOXC6+, ATF1+, TEAD2+, KLF10+ and RXRB+) and induced pluripotent stem cells (iPSCs) (HIC2+, ATF2+, BRF2+ and CEBPG+) (Fig. 1d, e; Additional file 2: Table S1 and Additional file 3: Table S2; and Table 1)

  • Pseudo-trajectory analysis demonstrated that the identified cell types were positioned along a clear lineage trajectory for both fibroblast and iPSC types which was exemplified by the top differentially expressed genes (Additional file 1: Figure S3–4, Additional file 4: Table S3 and Additional file 5: Table S4)

Read more

Summary

Introduction

The discovery that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) has provided a foundation for in vitro human disease modelling, drug development and population genetics studies. While the genetic background of reprogrammed cell lines has been shown to strongly influence gene expression, the effect has not been evaluated at the level of individual cells which would provide significant resolution. We harnessed recent technological advances for high-throughput generation of single cell data that leveraged cell multiplexing from multiple donors [10,11,12]. This experimental framework enabled the identification of cell type-specific genetic effects on gene expression which revealed eQTLs that were cell type specific and that would not be detected by ‘bulk’ approaches

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call