Abstract
A high-throughput hyperspectral microscope imaging (HMI) technology with hybrid deep learning (DL) framework defined as “Fusion-Net” was proposed for rapid classification of foodborne bacteria at single-cell level. HMI technology is useful in single-cell characterization, providing spatial, spectral and combined spatial-spectral profiles with high resolution. However, direct analysis of these high-dimensional HMI data is challenging. In this work, HMI data were decomposed into three parts as morphological features, intensity images, and spectral profiles. Multiple advanced DL frameworks including long-short term memory (LSTM) network, deep residual network (ResNet), and one-dimensional convolutional neural network (1D-CNN) were utilized, achieving classification accuracies of 92.2 %, 93.8 %, and 96.2 %, respectively. Taking advantage of fusion strategy, individual DL framework was stacked to form “Fusion-Net” that processed these features simultaneously with improved classification accuracy of up to 98.4 %. Our study demonstrated the ability of DL frameworks to assist HMI technology in single-cell classification as a diagnostic tool for rapid detection of foodborne pathogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.