Abstract

Autoimmune neurological disorders, including neuromyelitis optica spectrum disorder, anti-N-methyl-D-aspartate receptor encephalitis, anti-MOG antibody-associated disorders, and myasthenia gravis, are clearly defined by the presence of autoantibodies against neurological antigens. Although these autoantibodies have been heavily studied for their biological activities, given the heterogeneity of polyclonal patient samples, the characteristics of a single antibody cannot be definitively assigned. This review details the findings of polyclonal serum and CSF studies and then explores the advances made by single-cell technologies to the field of antibody-mediated neurological disorders. High-resolution single-cell methods have revealed abnormalities in the tolerance mechanisms ofseveral disorders and provided further insight into the B cells responsible for autoantibody production. Ultimately, several factors, including epitope specificity and binding affinity, finely regulate the pathogenic potential of an autoantibody, and a deeper appreciation of these factors may progress the development of targeted immunotherapies for patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call