Abstract

Colorectal cancer (CRC) is one of the most common malignant tumors in humans, with liver metastasis being the primary cause of mortality. The epithelial-mesenchymal transition (EMT) process endows cancer cells with enhanced metastatic potential. To elucidate the cellular mechanisms driving EMT in CRC, we analyzed single-cell RNA-sequencing (scRNA-seq) data from 11 non-metastatic primary tumors (TnM) and 11 metastatic primary tumors (TM) from CRC patients. Compared to TnM group, the TM samples showed elevated numbers of malignant epithelial cell and cancer-associated fibroblast (CAF) subsets that displayed enrichments of EMT, angiogenesis, and TGF-β signaling pathways. One specific TM-enriched subgroup of malignant epithelial cells underwent EMT to trans-differentiate into CXCL1+ CAFs that subsequently differentiated into SFRP2+ CAFs, which was validated by spatial transcriptomic and pseudotime trajectory analyses. Furthermore, cell-cell communication analysis identified BHLHE40 as a probable key transcription factor driving EMT that was associated with poor prognosis. Finally, in vitro and in vivo experiments functionally substantiated that BHLHE40 promoted the proliferation, invasion, migration, EMT, and liver metastasis of CRC cells. In summary, this study identified BHLHE40 as a key transcription factor regulating EMT that promotes liver metastasis in CRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call