Abstract

During central nervous system development, neurogenesis and gliogenesis occur in an orderly manner to create precise neural circuitry. However, no systematic dataset of neural lineage development that covers both neurogenesis and gliogenesis for the human spinal cord is available. We here perform single-cell RNA sequencing of human spinal cord cells during embryonic and fetal stages that cover neuron generation as well as astrocytes and oligodendrocyte differentiation. We also map the timeline of sensory neurogenesis and gliogenesis in the spinal cord. We further identify a group of EGFR-expressing transitional glial cells with radial morphology at the onset of gliogenesis, which progressively acquires differentiated glial cell characteristics. These EGFR-expressing transitional glial cells exhibited a unique position-specific feature during spinal cord development. Cell crosstalk analysis using CellPhoneDB indicated that EGFR glial cells can persistently interact with other neural cells during development through Delta-Notch and EGFR signaling. Together, our results reveal stage-specific profiles and dynamics of neural cells during human spinal cord development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call