Abstract

Schwann cells provide essential physical and chemical supportfor neurons and play critical roles in the peripheral nervous system. To acquire an enhanced understanding of the genetic characteristics of Schwann cells, we analyzed single-cell transcriptional profiling of Schwann cells in neonatal rat sciatic nerves, ordered the pseudotemporal states of Schwann cells, and determined the magnitude of RNA velocity vectors as well as cell cycle stages of Schwann cell subtypes. We discovered the cellular heterogeneity of Schwann cells in neonatal rat sciatic nerves, revealed the dynamic changes of Schwann cell subtypes, and pointed out the differentiation trajectory from Timp3- and Col5a3-expressing Schwann cell subtype 3 to other Schwann cell subtypes. The functional interpretation further indicated that subtype 3 Schwann cells display genetic signatures of DNA replication and the acquisition of mesenchymal traits. Our study presents a transcriptional summarization of the differentiation states of Schwann cell subtypes in neonatal rat sciatic nerves at single-cell resolution and may serve as a foundation for a deeper comprehension of the involvement of Schwann cells in the development and regeneration of peripheral nerves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call