Abstract

We have developed thin film Fabry-Perot filters directly coated on optical fibers to archive a high level of integration with a reduction of optical elements. Such band-pass filters can be used in fiber optical sensor systems, and for fiber communication, e.g. CWDM applications. The filters cavities consist of a single spacer and two dielectric mirrors. The dielectric mirrors are deposited by PVD directly on end-faces of single-mode optical fibers. Dielectric as well as polymeric materials were applied as the spacer layer. Polymeric spacer layers were deposited by dip coating. The influence of the mirror reflectivity on the transmission band of the Fabry-Perot filters was investigated. Furthermore, the optical performance of filters with first order (λ/2) as well as higher order spacers was analyzed. The experimental results are compared with numerical analysis of Fabry-Perot cavities on the end-face of cylindrical waveguides. The spectral characteristic of the filters are calculated using a software solving Maxwell´s equations by a FDTD method. The layer design of the filters and the deposition process were optimized for maximum transmission and narrow bandwidth of the transmission peak. Passive band-pass filters on fiber end-faces were designed, fabricated and characterized for transmission wavelengths of 945 nm, 1300 nm, as well as 1550 nm. Bandwidths as narrow as 1 nm could be achieved for 945 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call