Abstract

AbstractPromising nanostructured device concepts with staggering theoretical efficiencies where quantum confined states are embedded in the intrinsic region of conventional p-i-n solar cells have been proposed. However, practical realizations remain inefficient as these devices suffer from an inherent difficulty in the extraction of photo-generated carriers from the confined states. Within the framework of a “single particle in the box” theory, such shortcomings could be addressed by the use of resonant quantum tunneling designs that can expedite carrier escape. Nonetheless, in material systems studied thus far, the implementation of such design becomes elusive as band offsets between the nanostructure and the host material are distributed between the conduction and valence band leading to the confinement of both holes and electrons (i.e. two particle problem). Our studies of such p-i-n Multi-Quantum Well (MQW) solar cells, only differing by their MQW region composition and geometry, have shown a strong dependence of device performance on quantum wells composition and thickness. Leveraging on the special property of dilute nitrides and using a carefully chosen material system and device design we show the possibility of circumventing this problem by separating the optimization of the valence and conduction band and reducing the issue to a single particle problem. Band structure calculations including strain effects, band anti-crossing models and transfer matrix methods are used to theoretically demonstrate optimum conditions for enhanced vertical transport. High electron tunneling escape probability, together with a free movement of quasi-3 D holes, is predicted to result in enhanced PV device performance. Furthermore, the increase in electron effective mass due to the incorporation of N translates in enhanced absorptive properties, ideal for PV application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.