Abstract
We study light absorption mechanisms in semiconducting carbon nanotubes using low-temperature, single-nanotube photoluminescence excitation spectroscopy. In addition to purely electronic transitions, we observe several strong phonon-assisted bands due to excitation of one or more phonon modes together with the first electronic state. In contrast with a small width of emission lines (sub-meV to a few meV), most of the photoluminescence excitation features have significant linewidths of tens of meV. All of these observations indicate very strong electron-phonon coupling that allows efficient excitation of electronic states via phonon-assisted processes and leads to ultrafast intraband relaxation due to inelastic electron-phonon scattering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.