Abstract

We present a decomposition of the two-particle vertex function of the single-band Anderson impurity model which imparts a physical interpretation of the vertex in terms of the exchange of bosons of three flavors. We evaluate the various components of the vertex for an impurity model corresponding to the half-filled Hubbard model within dynamical mean-field theory. For small values of the interaction almost the entire information encoded in the vertex function corresponds to single-boson exchange processes, which can be represented in terms of the Hedin three-leg vertex and the screened interaction. Also for larger interaction, the single-boson exchange still captures scatterings between electrons and the dominant low-energy fluctuations and provides a unified description of the vertex asymptotics. The proposed decomposition of the vertex does not require the matrix inversion of the Bethe-Salpeter equation. Therefore, it represents a computationally lighter and hence more practical alternative to the parquet decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.