Abstract

The demand for an efficient and reliable ultrasonic phased array imaging system is not unique to a single industry. Today's imaging systems can be enhanced in a number of areas including; improving scanning and processing times, reducing data storage requirements, simplifying hardware and prolonging probe lifespan. In this work, it is shown that by combining the use of Coded Excitation with single-bit data capture, a number of these areas can be improved. Despite using single-bit receive data, resolution can be recovered through the coded excitation pulse compression process, and shown to produce high Signal-to-Noise Ratio (SNR) images of Phase Coherence Imaging (PCI) and Total Focusing Method (TFM) of tip diffraction in a carbon steel sample. Comparison with conventional single-cycle transmission pulses has shown that little imaging performance degradation is seen despite a significant reduction in data resolution and size. This has also been shown to be effective at low excitation voltages with gain compensation due to the obsolescence of signal saturation concerns when considering single-bit receive data. The ability to compute high-resolution ultrasonic images from low-resolution input data at low transmission voltages has important implications for data compression, acquisition & imaging performance, operator safety and hardware simplification for ultrasonic imaging systems across industrial and medical fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.