Abstract
The big-jump principle is a well-established mathematical result for sums of independent and identically distributed random variables extracted from a fat-tailed distribution. It states that the tail of the distribution of the sum is the same as the distribution of the largest summand. In practice, it means that when in a stochastic process the relevant quantity is a sum of variables, the mechanism leading to rare events is peculiar: Instead of being caused by a set of many small deviations all in the same direction, one jump, the biggest of the lot, provides the main contribution to the rare large fluctuation. We reformulate and elevate the big-jump principle beyond its current status to allow it to deal with correlations, finite cutoffs, continuous paths, memory, and quenched disorder. Doing so we are able to predict rare events using the extended big-jump principle in Lévy walks, in a model of laser cooling, in a scattering process on a heterogeneous structure, and in a class of Lévy walks with memory. We argue that the generalized big-jump principle can serve as an excellent guideline for reliable estimates of risk and probabilities of rare events in many complex processes featuring heavy-tailed distributions, ranging from contamination spreading to active transport in the cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.