Abstract
The molecular mechanism of human intestinal apolipoprotein (apo) B-48 synthesis has been elucidated by a combination of sequencing of cloned complementary DNAs and RNase cleavage analysis of RNA heteroduplex. All intestinal cDNA clones contained a single C to T base substitution in the codon CAA encoding Gln2153 in apoB-100 cDNA, resulting in a translational stop. One of the our intestinal apoB cDNA clones was polyadenylated 106 bases downstream from the stop codon, possibly producing a 7-kb apoB message in the intestine. RNase cleavage analysis of the RNA heteroduplex between hepatic or intestinal RNA and apoB cDNA-directed anti-sense RNA showed that this single C to U substitution may occur in most of intestinal apoB mRNA. These results suggested that human apoB-48 is mostly produced by apoB mRNA with an in-frame stop codon in the intestine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.