Abstract

Transfusion recipients who become alloimmunized to blood group antigens require antigen-negative blood to limit adverse transfusion reactions. An alternative strategy to phenotyping blood is to assay genomic DNA for the associated single nucleotide polymorphisms (SNPs). A multiplex PCR coupled with a single base oligonucleotide extension assay using genomic DNA can identify SNPs related to D, C/c, E/e, S/s, K/k, Kp(a/b), Fy(a/b), Fy0 (-33 promoter silencing polymorphism), Jk(a/b), Di(a/b), and HPA-1a/b. Using this technology, individual SNP call rates vary from 98 to 100%. The platform has the capacity to genotype thousands of samples per day. The suite of SNPs provides rapid data for both blood donors and transfusion recipients and is poised to change whose blood is provided for potential transfusion recipients. The potential to dramatically lower the incidence of alloimmunization and to avoid serious hemolytic complications of transfusions can be realized with the implementation of this technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.