Abstract

The possibility of using the mode of single-axis solar orientation is considered for a satellite placed into a nearly circular orbit with an altitude of 900 km and bearing a solar sail. The satellite (together with the sail) has an axisymmetric structure, its symmetry axis being the principal central axis of the maximum moment of inertia. The center of the sail pressure lies on this axis and is displaced with respect to the satellite's center of mass. The symmetry axis of the satellite is set to the Sun so that its center of mass would be located between the Sun and the pressure center and would rotate around this axis with an angular velocity of a few degrees per second. The satellite's axis of symmetry makes a slow precession under the action of the gravitational moment and the moment of light pressure forces. Though the maximum magnitudes of these moments are comparable, the moment of the light pressure forces dominates and controls the precession in such a way that the symmetry axis orientation to the Sun remains unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.