Abstract

The electrocatalytic hydrogen evolution reaction (HER) is one of the most studied and promising processes for hydrogen fuel generation. Single-atom catalysts have been shown to exhibit ultra-high HER catalytic activity, but the harsh preparation conditions and the low single-atom loading hinder their practical applications. Furthermore, promoting hydrogen evolution reaction kinetics, especially in alkaline electrolytes, remains as an important challenge. Herein, Pt/C60 catalysts with high-loading, high-dispersion single-atomic platinum anchored on C60 are achieved through a room-temperature synthetic strategy. Pt/C60-2 exhibits high HER catalytic performance with a low overpotential (η10) of 25 mV at 10 mA cm−2. Density functional theory calculations reveal that the Pt-C60 polymeric structures in Pt/C60-2 favors water adsorption, and the shell-like charge redistribution around the Pt-bonding region induced by the curved surfaces of two adjacent C60 facilitates the desorption of hydrogen, thus favoring fast reaction kinetics for hydrogen evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.