Abstract

A Ti3(AlxCu1-x)C2 phase with Cu atoms with a degree of ordering in the A plane is synthesized through the A site replacement reaction in CuCl2 molten salt. The weakly bonded single-atom-thick Cu layers in a Ti3(AlxCu1-x)C2 MAX phase provide actives sites for catalysis chemistry. As-synthesized Ti3(AlxCu1-x)C2 presents unusual peroxidase-like catalytic activity similar to that of natural enzymes. A fabricated Ti3(AlxCu1-x)C2/chitosan/glassy carbon electrode biosensor prototype also exhibits a low detection limit in the electrochemical sensing of H2O2. These results have broad implications for property tailoring in a nanolaminated MAX phase by replacing the A site with late transition elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.