Abstract

The Li2S-based cathodes to couple with Li-free anodes are regarded as a commercially available approach to overcome the safety risk of lithium metal anodes. However, the passivated Li2S instinct leads to a high activation potential in the initial charging process, and the notorious shuttle effect of polysulfide is inevitable upon cell cycling. Here we create a single atom tailoring strategy by comproportionation reactions (Li2S + 1/8S8 = Li2S2) to form the Li2S2 materials without any complex manufacturing process or additives, where the Li2S2 cell enables a lower potential barrier and allows for the 3.0 V activation voltage without any other material modification. Meanwhile, the polar conducting material TaB2 is introduced to restrain the migration of polysulfides, and provide fast redox reaction kinetics. With those ingenious tailoring of cell designs, the Li2S2-TaB2 cell (Li2S2: 88 wt%) exhibits high areal capacity (4.6 mAh/cm2 at 6.0 mg/cm2 Li2S2 loading), excellent cycling stability (500 cycles at 1.6 mA/cm2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.