Abstract

For the past 50 years, atomic standards based on the frequency of the cesium ground-state hyperfine transition have been the most accurate time pieces in the world. We now report a comparison between the cesium fountain standard NIST-F1, which has been evaluated with an inaccuracy of about 4 x 10(-16), and an optical frequency standard based on an ultraviolet transition in a single, laser-cooled mercury ion for which the fractional systematic frequency uncertainty was below 7.2 x 10(-17). The absolute frequency of the transition was measured versus cesium to be 1,064,721,609,899,144.94 (97) Hz, with a statistically limited total fractional uncertainty of 9.1 x 10(-16) the most accurate absolute measurement of an optical frequency to date.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.