Abstract

DFT calculations are performed at constant charge, while practical electrochemical reactions often take place under constant potential. To unravel the effect of the model difference on single-atom electrocatalysis, we implement benchmarked DFT and grand-canonical DFT calculations to systematically investigate the hydrogen adsorption on 99 single-atom M-NxCy motifs. We find that the initial electrode potentials for all M-NxCy are negative, leading to the loss of system electrons once their electrode potentials are fixed at 0 V/SHE. We prove that the quantitive difference of ΔG(*H) between the CCM and CPM is proportional to the square difference of total charge change before and after H adsorption, which originates from the adjustment of electronic occupation states. Our work provides theoretical insight into the differential capacitance model in the graphene-confining SACs for the HER and emphasizes the importance of CPM for in silico design of electrocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call