Abstract

Developing highly active and selective electrocatalysts for electrochemical reduction of CO2 can reduce environmental pollution and mitigation of greenhouse gas emission. Owing to maximal atomic utilization, the atomically dispersed catalysts are broadly adopted in CO2 reduction reaction (CO2 RR). Dual-atom catalysts (DACs), with more flexible active sites, distinct electronic structures, and synergetic interatomic interactions compared to single-atom catalysts (SACs), may have great potential to enhance catalytic performance. Nevertheless, most of the existing electrocatalysts have low activity and selectivity due to their high energy barrier. Herein, 15 electrocatalysts are explored with noble metallic (Cu, Ag, and Au) active sites embedded in metal-organic hybrids (MOHs) for high-performance CO2 RR and studied the relationship between SACs and DACs by first-principles calculation. The results indicated that the DACs have excellent electrocatalytic performance, and the moderate interaction between the single- and dual-atomic center can improve catalytic activity in CO2 RR. Four among the 15 catalysts, including (CuAu), (CuCu), Cu(CuCu), and Cu(CuAu) MOHs inherited a capability of suppressing the competitive hydrogen evolution reaction with favorable CO overpotential. This work not only reveals outstanding candidates for MOHs-based dual-atom CO2 RR electrocatalysts but also provides new theoretical insights into rationally designing 2D metallic electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.