Abstract
Semiconductor metal oxide gas sensors have been proven to be capable of detecting Listeria monocytogenes, one kind of foodborne bacteria, through monitoring the characteristic gaseous metabolic product 3-hydroxy-2-butanone. However, the detection still faces challenges because the sensors need to work at high temperatures and output limited gas sensing performance. The present study focuses on the design of single-atom Au-functionalized mesoporous SnO2 nanospheres for the sensitive detection of ppb-level 3-hydroxy-2-butanone at low temperatures (50 °C). The fabricated sensors exhibit high sensitivity (291.5 ppm-1), excellent selectivity, short response time (10 s), and ultralow detection limit (10 ppb). The gas sensors exhibit exceptional efficacy in distinguishing L. monocytogenes from other bacterial strains (e.g., Escherichia coli). Additionally, wireless detection of 3-hydroxy-2-butanone vapor is successfully achieved through microelectromechanical systems sensors, enabling real-time monitoring of the biomarker 3-hydroxy-2-butanone. The superior sensing performance is ascribed to the mesoporous framework with accessible active Au-O-Sn sites in the uniform sensing layer consisting of single-atom Au-modified mesoporous SnO2 nanospheres, and such a feature facilitates the gas diffusion, adsorption, and catalytic conversion of 3-hydroxy-2-butanone molecules in the sensing layer, resulting in excellent sensing signal output at relatively low temperature that is favorable for developing low-energy-consumption gas sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.