Abstract
Single-atom alloys (SAAs) play an increasingly significant role in the field of single-site catalysis and are typically composed of catalytically active elements atomically dispersed in more inert and catalytically selective host metals. SAAs have been shown to catalyze a range of industrially important reactions in electro-, photo-, and thermal catalysis studies. Due to the unique geometry of SAAs, the location of the transition state and the binding site of reaction intermediates are often decoupled, which can enable both facile dissociation of reactants and weak binding of intermediates, two key factors for efficient and selective catalysis. Often, this results in deviations from transition metal scaling relationships that limit conventional catalysts. SAAs also offer reduced susceptibility to CO poisoning, cost savings from reduced precious metal usage, opportunities for bifunctional mechanisms via spillover, and higher resistance to deactivation by coking that plagues many industrial catalysts. In this review, we begin by introducing SAAs and describe how model systems and nanoparticle catalysts can be prepared and characterized. We then review all available SAA literature on a per reaction basis before concluding with a description of the general properties of this new class of heterogeneous catalysts and presenting opportunities for future research and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.