Abstract

We consider a system composed of a single artificial atom coupled to a cavity mode. The artificial atom is biased such that the most dominant relaxation process in the system takes the atom from its ground state to its excited state, thus ensuring population inversion. A recent experimental manifestation of this situation was achieved using a voltage-biased superconducting charge qubit. Even under the condition of ‘inverted relaxation’, lasing action can be suppressed if the ‘relaxation’ rate is larger than a certain threshold value. Using simple transition-rate arguments and a semiclassical calculation, we derive analytic expressions for the lasing suppression condition and the state of the cavity in both the lasing and suppressed-lasing regimes. The results of numerical calculations agree very well with the analytically derived results. We start by analyzing a simplified two-level-atom model, and we then analyze a three-level-atom model that should describe accurately the recently realized superconducting artificial-atom laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.