Abstract

The aim of this study was to understand the pull-out properties of E-glass woven fabrics. For this purpose, low yarn linear density E-Glass-F1 and high yarn linear density E-Glass-F2 woven fabrics were used to conduct the pull-out tests. A developed yarn pull-out fixture was used to test short and long fabric sample dimensions. Data generated from the single and multiple yarn pull-out tests using E-Glass-F1 and E-Glass-F2 woven fabrics included fabric pull-out forces, yarn crimp extensions in the fabrics and fabric displacements. Yarn pull-out forces depend on yarn linear density, fabric density, fabric sample dimensions and the number of pulled ends in the fabric. Results showed that multiple yarn pull-out force was higher than single yarn pull-out force. Single and multiple yarn pull-out forces in high yarn linear density E-Glass-F2 were higher than those of low yarn linear density E-Glass-F1 fabric. It was found that the crimp ratio in the fabric and fabric lengths is an important structural parameter for yarn crimp extension. Fabric displacement resulting from the multiple yarn pull-out test was higher than that of the single yarn pull-out test. Fabric displacement generated from single and multiple pull-out tests depended on fabric sample dimensions and the number of pulled yarn ends. Future research will concentrate on the development of the analytical relationship between pull-out and yarn fabric structural parameters which could result in a better fabric structure for use in composite applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call