Abstract

In a natural environment, sensory systems are faced with ever-changing stimuli that can occur, disappear or change their properties at any time. For the animal to react adequately the sensory systems must be able to detect changes in external stimuli based on its neuronal responses. Since the nervous system has no prior knowledge of the stimulus timing, changes in stimulus need to be inferred from the changes in neuronal activity, in particular increase or decrease of the spike rate, its variability, and shifted response latencies. From a mathematical point of view, this problem can be rephrased as detecting changes of statistical properties in a time series. In neuroscience, the CUSUM (cumulative sum) method has been applied to recorded neuronal responses for detecting a single stimulus change. Here, we investigate the applicability of the CUSUM approach for detecting single as well as multiple stimulus changes that induce increases or decreases in neuronal activity. Like the nervous system, our algorithm relies exclusively on previous neuronal population activities, without using knowledge about the timing or number of external stimulus changes. We apply our change point detection methods to experimental data obtained by multi-electrode recordings from turtle retinal ganglion cells, which react to changes in light stimulation with a range of typical neuronal activity patterns. We systematically examine how variations of mathematical assumptions (Poisson, Gaussian, and Gamma distributions) used for the algorithms may affect the detection of an unknown number of stimulus changes in our data and compare these CUSUM methods with the standard Rate Change method. Our results suggest which versions of the CUSUM algorithm could be useful for different types of specific data sets.

Highlights

  • It is essential for all animals to properly perceive and interpret their environment, e.g., to avoid predators or to catch prey

  • Changes in stimulus velocity led to changes in spike rate, which depended on the combination of velocities before and after the change either increased or decreased

  • The peristimulus time histograms (PSTHs) in each time interval of 250 ms before and after a stimulus change were categorized with K-means clustering (MATLAB function kmeans) using the Euclidean distance (Xu and Wunsch, 2005)

Read more

Summary

Introduction

It is essential for all animals to properly perceive and interpret their environment, e.g., to avoid predators or to catch prey. For the respective sensory system, these spike trains are the only source of information about the environment. CUSUM Neuronal Activity Change Detection changes in stimulus properties that can occur at any time. It is crucial for the sensory systems to detect changes in incoming spike trains caused by changes of relevant external stimuli so that the downstream motor system can generate an appropriate behavior. Delayed or missed perception can lead to dangerous situations or losing prey, whereas false alarms cause loss of energy. Both of them may result in lower survival rates

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.