Abstract

The UV-induced photodissociation dynamics of iodomethane (CH3I) in its A-band are investigated by time-resolved coincident ion momentum imaging using strong-field ionization as a probe. The delay-dependent kinetic energy distribution of the photofragments resulting from double ionization of the molecule maps the cleavage of the carbon-iodine bond and shows how the existence of a potential well in the di-cationic potential energy surfaces shapes the observed distribution at small pump-probe delays. Furthermore, the competition between single- and multi-photon excitation and ionization of the molecule is studied as a function of the intensity of the UV-pump laser pulse. Two-photon excitation to Rydberg states is identified by tracking the transformation of the delay-dependent singly-charged iodomethane yield from a pure Gaussian distribution at low intensity to a Gaussian with an exponentially decaying tail at higher intensities. Dissociative ionization induced by absorption of three UV photons is resolved as an additional delay-dependent feature in the kinetic energy of the fragment ions detected in coincidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.